Гипоталамус Гипофиз Эпифиз

VMP 16.02.2019

Hypothalamic stem cells control ageing speed partly through exosomal miRNAs
Aging Research Brain Cells Found to Control Aging
Нейровоспаление может оказаться центральным процессом в старении организма
В старении «виноваты» стволовые клетки гипоталамуса
Жизнь и смерть митохондрий
Пять перспективных технологий для вечной молодости

Исследователи из Медицинского колледжа имени Альберта Эйнштейна обнаружили в гипоталамусе мышей небольшую популяцию нейрональных стволовых клеток (эти клетки есть у всех взрослых млекопитающих, и они дают начало новым нейронам). В процессе эксперимента выяснилось, что с возрастом количество нейрональных стволовых клеток в гипоталамусе уменьшается. А от того, насколько быстро идет этот процесс, и зависит скорость старения всего организма. «Исследование показывает, что количество нейрональных стволовых клеток в гипоталамусе в течение жизни сокращается. И чем быстрее происходит это сокращение, тем быстрее происходит и старение», – говорит профессор Цай. Но самое удивительное, как оказалось, процесс потери этих клеток можно замедлить. «Этот процесс обратим. Если восполнить популяцию нейрональных стволовых клеток гипоталамуса, то старение можно замедлить», – добавляет Цай. Вначале ученые заметили, что мыши начинают терять свои нейрональные стволовые клетки примерно в десятимесячном возрасте – до того, как проявляются видимые признаки старения. К двухлетнему возрасту практически вся популяция этих клеток исчезает.
Затем авторам удалось выяснить, что, если удалить нейрональных стволовые клетки из гипоталамуса молодых животных, то они начинают стареть быстрее.
На следующем этапе эксперимента в мозг стареющих мышей ученые ввели популяцию нейрональных стволовых клеток, которую взяли у молодых животных.
Удивительно, но спустя четыре месяца у этих грызунов наблюдались улучшения когнитивных способностей и мышечной функции в сравнении с обычными мышами из контрольной группы того же возраста. Более того, жили они в среднем на десять процентов дольше, чем их сородичи.
Профессор Цай объясняет такое замедление старения тем, что введенные нейрональные стволовые клетки продуцируют микроРНК. Это небольшие последовательностях из 19-24 нуклеотидов. Они не кодируют белки, но выполняют важные регуляторные функции – связываются с матричной РНК (мРНК) и, таким образом, вмешиваются в процесс синтеза белков. В последнее время ученые получают все новые и новые данные об их роли в организме, в том числе и в регуляции процессов старения. И действительно, когда ученые ввели стареющим мышам в мозг микроРНК, то увидели, что у животных улучшились когнитивные функции, память, способность ориентироваться в пространстве, социальные навыки. Как говорит профессор Цай, сейчас их основная задача понять, какие еще механизмы замедления старения, кроме продуцирования микроРНК, лежат в основе действия нейрональных стволовых клеток. Ученые надеются, что в конце концов, их исследования помогут продлить жизнь людям, причем, жизнь без болезней, свойственных старости.

Стволовые клетки в гипоталамусе выделяют огромное количество мембранных пузырьков – экзосом, наполненных разнообразными микрорегуляторными РНК (микроРНК). Так называют особые молекулы РНК очень небольшого размера, которые могут управлять синтезом тех или иных белков. Пузырьки из микроРНК можно получить из стволовых клеток, растущих в лабораторной культуре, в посуде с питательной культурой. И если эти пузырьки ввести в гипоталамус мышей, то эффект окажется тот же, что и при введении стволовых клеток. То есть стволовые клетки замедляют старение не только как ресурс клеток на замену, но и как источник неких молекулярных сигналов. Пока неясно, как и где работают стволовые микроРНК, возможно, они помогают отключить воспаление в том же гипоталамусе, а возможно, они отправляются в другие отделы нервной системы.


Эндокринная система 2. Гипоталамус

Гипоталамус и старение

Большие биологические часы. Гипоталамус. Александр Кудрявцев


Таламус и гипоталамус — Вячеслав Дубынин





Промежуточный мозг

Лимбическая Система Головного Мозга


Анатомия промежуточного мозга, таламуса и гипоталамуса

промежуточный мозг (diencephalon)

отделы головного мозга


гипофиз и гипоталамус

Введение в эндокринную систему


Центры мозговой коры


Билет 018. ГИПОТАЛАМУС, СТРОЕНИЕ И ФУНКЦИИ. ТРЕТИЙ ЖЕЛУДОЧЕК

Билет 019. КОНЕЧНЫЙ МОЗГ. ДОЛИ ПОЛУШАРИЙ, БОРОЗДЫ И ИЗВИЛИНЫ ВЕРХНЕЛАТЕРАЛЬНОЙ ПОВЕРХНОСТИ.

Базальные ганглии головного мозга. Basal ganglia of the brain.


Эпифиз. Почему он так важен для человека


Гипоталамус Отвечает за…


Нейро-эндокринная система. Гипоталамус


Нейро-эндокринная система. Эпифиз


Нейро-эндокринная система. Надпочечники.


Гипоталамус – Душа Человека




Эндокринная система. Центральное звено. Лекция по гистологии.

Гипофиз, гипоталамус и эпифиз. Роль Флуревитов

ЭНДОКРИННАЯ СИСТЕМА И ПОЛОВЫЕ ГОРМОНЫ. ГИПОТАЛАМУС-ГИПОФИЗ-ЯИЧКИ

Эндокринная система – 1. Видео лекция С.М.Зиматкин

Эндокринная система – 2. Видео лекция С.М.Зиматкин






Строение и функции головного мозга

Как связаны Гипоталамус и Гипофиз?

Гипоталамус регулирует секрецию гормонов гипофиза (или питуитарной железы), с которым связан посредством воронки. Гипофиз также является эндокринной железой и расположен под гипоталамусом, защищённый с помощью турецкого седла (костное образование нашего черепа, напоминающее по форме седло). Его функция заключается в направлении в кровь гормонов, которые, как определяет гипоталамус, необходимы нашему телу для регулирования гомеостаза, другими словами, для восстановления равновесия организма и саморегуляции температуры нашего тела. Гипоталамус и гипофиз так тесно связаны, что формируют гипоталамо-гипофизарную систему. Друг без друга они бы не могли полноценно функционировать. Другими словами, гипофиз помогает гипоталамусу распространять своё влияние по всему телу, задействуя железы, недоступные гипоталамусу.

Что происходит при дисфункции Гипоталамуса? Болезни и поражения

Учитывая важность гипоталамуса, повреждение любого из его ядер может привести к летальному исходу. Например, при поражении центра насыщения (в связи с чем мы становимся неспособными испытывать чувство сытости), мы начнем испытывать постоянный голод и есть без остановки, со всеми вытекающими осложнениями для нашего здоровья. Наиболее часто встречающиеся патологии:

  • Синдром несахарного диабета: вызван дисфункциями супраоптического,  паравентрикулярного ядер и супраоптикогипофизарного тракта. При этом синдроме из-за пониженного производства АДГ происходит увеличение потребления жидкости, сопровождающееся обильным мочеиспусканием (полиурия).
  • Травма каудолатеральной части гипоталамуса: при повреждении этого участка гипоталамуса снижаются как симпатические функции, так и температура тела.
  • Нарушения ростромедиального отдела гипоталамуса: при поверждении этой области гипоталамуса снижаются парасимпатические функции, однако температура тела увеличивается.
  • Синдром Корсакова: при повреждении сосцевидных ядер (тесно связанных с гиппокампом и, соответственно, с памятью) происходит так называемая  антероградная амнезия, другими словами, нарушение памяти о событиях, неспособность запоминать новые события. Люди с таким синдромом склоны заполнять “пробелы” в своей памяти вымышленными ситуациями (тем самым компенсируя забытые воспоминания, без намерения обмануть), то есть событиями, которые не имели место в их жизни или не соответствуют действительности. Несмотря на то, что это нарушение в основном связано с хроническим алкоголизмом, оно также может быть вызвано дисфункциями маммилярных отростков и их соединений (как, например, гиппокамп или медиодорсальное ядро таламуса).

Подробнее о…

Какие гормоны вырабатывает Гипоталамус?

Принцип работы гипоталамуса основан на производстве гормонов. Поэтому важно знать какие виды гормонов он выделяет:

  • Нейрогормоны: антидиуретический гормон (АДГ) и Окситоцин.
  • Гипоталамические факторы: Ангиотензин II (AII), пролактин-ингибирующий фактор (ПИФ), соматотропин-ингибирующий фактор (СИФ или соматостатин), гормон, высвобождающий адренокортикотропный гормон или кортикотропин (КРГ), гонадотропин-высвобождающий гормон (ГНРГ), тиротропин-высвобождающий гормон (ТРГ) и соматропин-высвобождающий гормон (“гормон роста” или соматокринин).

Ядра Гипоталамуса и их функции

Из каких ядер состоит Гипоталамус и для чего они предназначены? Как мы уже рассмотрели ранее, гипоталамус состоит из большого числа ядер (групп нейронов), и каждое из них выполняет ту или иную фукнцию. Основные ядра:

  • Аркуатное ядро: несёт эмоциональную функцию гипоталамуса. Кроме того, выполняет важнейшую эндокринную функцию, синтезируя гипоталамические пептиды и нейротрансмиттеры. Отвечает за производство гонадотропин-высвобождающего гормона (ГНРГ), также известного, как как лютеинизирующий гормон (люлиберин).
  • Переднее гипоталамическое ядро: отвечает за потерю тепла через потоотделение. Также ответственно за ингибирование высвобождения тиротропина в гипофизе.
  • Заднее гипоталамическое ядро: его функцией является удерживание тепла когда нам холодно.
  • Боковые ядра: регулируют ощущения голода и жажды. Когда обнаруживается дефицит сахара или воды, пытаются восстановить баланс, побуждая нас принять пищу или воду.
  • Сосцевидное ядро: тесно связан с гиппокампом и памятью.
  • Паравентрикулярное ядро: регулирует секрецию гипофиза посредством синтеза гормонов, таких как окситоцин, вазопрессин и гормон, высвобождающий адренокортикотропин (КРГ).
  • Преоптическое ядро: влияет на парасимпатические функции, такие как приём пищи, движение и романтические отношения.
  • Супраоптическое ядро: отвечает за регулирование кровяного давления и баланс жидкостей в организме посредством производства антидиуретического гормона (АДГ).
  • Супрахиазматическое ядро: регулирует Циркадные Ритмы и отвечает за флуктуацию гормонов, задействованных в этом процессе.
  • Вентромедиальное ядро: регулирует ощущение сытости.

Как гипоталамус получает информацию? Куда он её отсылает?

Гипоталамус, благодаря своему привилегированному положению в мозге, обладает огромным количеством связей. С одной стороны, он получает информацию (афференции) от других структур, а с другой, сам отправляет информацию (эфференции) другим частям мозга.

    • Aфференции:
    • Ретикулярные афференции от ствола мозга: от ствола мозга к боковому сосцевидному ядру.
    • Средний прозэнцефалический пучок: от обонятельной области, септальных ядер и области, окружающей миндалину, к боковой преоптической зоне и боковой части гипоталамуса.
    • Миндально-таламические волокна: идут от миндадины, с одной стороны, к среднему преоптическому ядру, переднему, ветромедиальному и дугообразному ядру гипоталамуса. С другой стороны, миндалина соединена с боковым ядром гипоталамуса.
    • Гиппокампо-таламические волокна: ведут от гиппокампа к перегородке мозга и сосцевидным ядрам.
    • Предспаечные волокна свода мозга: соединяют с дорсальной частью гипоталамуса, септальными ядрами и боковым преоптическим ядром.
    •  Постспаечные волокна свода мозга: несут информацию среднему сосцевидному ядру.
    • Ретино-гипоталамические волокна: собирают информацию об освещении, которую они получают от ганглионарных клеток и отправляют её в супрахиазматическое ядро для регулирования циркадного цикла.
    • Корковые проекции: получают информацию от коры головного мозга (например, от грушевидной доли) и отсылают её в гипоталамус.
    • Эфференции:
    • Дорсальный продольный пучок: от средней и перивентрикулярной области гипоталамуса к периакведуктальному мезенцефалическому серому веществу.
    • Чувствительные сосцевидные волокна: от среднего сосцевидного ядра и, с одной стороны, к передним таламическим ядрам, а с другой, к среднему мозгу, к вентральным и дорсальным теменным ядрам.
    • Супраоптический гипофизарный тяж: от супраоптических и паравентрикулярных ядер к задней доле гипофиза.
    • Тубергипофизарный тяж: от дугообразного ядра к воронкообразному стволу и срединному бугру.
    • Нисходящие проекции ствола мозга и спинного мозга: от  паравентрикулярного ядра, боковой и задней области, к одиночному, двойному, дорсальному ядрам блуждающего нерва (Х пара черепных нервов) и вентролатеральным областям продолговатого мозга (медуллы).
  • Эфферентные проекции супрахиазматическое ядра:   главная эфференция супрахиазматического ядра соединяется с шишковидным телом.

-https://www.youtube.com/watch?v=O9xWwyOOTt4
Тайна шишковидной железы.Дэвид Уилкок


Гипоталамус и точка ЦИ-ХАЙ VC-6.


Шишковидная железа в процессе самоисцеления

-https://www.youtube.com/watch?v=sVL4LkUEkJ8
ШИШКОВИДНАЯ ЖЕЛЕЗА — ЦЕНТР СВЕРХСПОСОБНОСТЕЙ

ГИПОТАЛАМУС И ГИПОФИЗ

Гипоталамус (hypothalamus) составляет нижнюю, филогенетически наиболее древнюю часть промежуточного мозга. Условная граница между таламусами и гипоталамусом проходит на уровне гипоталамических борозд, находящихся на боковых стенках третьего желудочка мозга.

Гипоталамус (рис. 12.4) условно делится на две части: переднюю и заднюю. К задней части гипоталамической зоны относят расположенные позади серого бугра сосцевидные тела (corpora mammillaria) с прилежащими к ним участками мозговой ткани. К передней части относится зрительный перекрест (chiasma opticum) и зрительные тракты (tracti optici), серый бугор (tuber cinereum), ворон­ка (infundibulum) и гипофиз (hypophysis). Гипофиз, соединенный с серым буг­ром через воронку и гипофизарную ножку, располагается в центре основания черепа в костном ложе — гипофизарной ямке турецкого седла основной кости. Диаметр гипофиза составляет не более 15 мм, масса его от 0,5 до 1 г.

Гипоталамическая область состоит из многочисленных клеточных скопле­ний — ядер и пучков нервных волокон. Основные ядра гипоталамуса можно разделить на 4 группы.

  1. В переднюю группу входят медиальные и латеральные предоптическое, супраоптическое, паравентрикулярные и переднее гипоталамическое ядра.
  2. Промежуточную группу составляют дугообразное ядро, серобугорные ядра, вентромедиальное и дорсомедиальнос гипоталамические ядра, дорсаль­ное гипоталамическое ядро, заднее паравентрикулярное ядро, ядро воронки.
  3. Задняя группа ядер включает заднее гипоталамическое ядро, а также ме­диальные и латеральные ядра сосцевидного тела.
  4. К дорсальной группе относятся ядра чечевицеобразной петли.

Ядра гипоталамуса имеют ассоциативные связи между собой и с другими отделами мозга, в частности с лобными долями, лимбическими структура-

Рис. 12.4. Сагиттальный срез гипоталамуса.

1 — паравентрикулярное ядро; 2 — сосцевидно-таламический пучок; 3 — дорсомеди-альное гипоталамическое ядро; 4 — вентромедиальное гипоталамическос ядро, 5 — мост мозга; 6 — супраоптический гипофизарный путь; 7 — нейрогипофиз; 8 — аде-ногипофиз; 9 — гипофиз; 10 — зрительный перекрест; 11 — супраоптичсское ядро; 12 — преоптическое ядро.

ми больших полушарий, различными отделами обонятельного анализатора, таламусами, образованиями экстрапирамидной системы, ретикулярной фор­мацией ствола мозга, ядрами черепных нервов. Большинство этих связей — двусторонние. Ядра гипоталамической области связывают с гипофизом про­ходящий через воронку серого бугра и ее продолжение — гипофизарную ножку — гипоталамо-гипофизарный пучок нервных волокон и густая сеть сосудов.

Гипофиз (hypophisis) представляет собой неоднородное образование. Он раз­вивается из двух разных зачатков. Передняя, большая, его доля (аденогипофиз) формируется из эпителия первичной ротовой полости или так называемого кармана Ратке; она имеет железистое строение. Задняя доля состоит из нер­вной ткани (нейрогипофиз) и представляет собой непосредственное продолже­ние воронки серого бугра. Кроме передней и задней долей, в гипофизе раз­личают среднюю, или промежуточную, долю, представляющую собой узкую эпителиальную прослойку, содержащую пузырьки (фолликулы), наполненные серозной или коллоидной жидкостью.

По функции структуры гипоталамуса делят на неспецифические и специ­фические. Специфические ядра обладают способностью выделять химические

соединения, обладающие эндокринной функцией, регулирующие, в частнос­ти, метаболические процессы в организме и поддержание гомеостаза. К спе­цифическим относят обладающие способностью к нейрокринии супраопти-ческое и паравентрикулярное ядра, связанные с нейрогипофизом с помощью супраоптико-гипофизарного пути. Они продуцируют гормоны вазопрессин и окситоцин, которые по упомянутому пути переносятся через ножку гипофиза в нейрогипофиз.

Вазопрессин, или антидиуретический гормон (АДГ), продуцируемый главным образом клетками супраоптического ядра, очень чувствителен к изменению солевого состава крови и регулирует водный метаболизм, стимулируя резор­бцию воды в дистальном отделе нефронов. Таким образом, АДГ регулирует концентрацию мочи. При дефиците этого гормона в связи с поражением упо­мянутых ядер увеличивается количество выделяемой мочи с низкой относи­тельной плотностью — развивается несахарный диабет, при котором наряду с полиурией (до 5 л мочи и более) возникает сильная жажда, ведущая к потреб­лению большого количества жидкости (полидипсия).

Окситоцин продуцируется паравентрикулярными ядрами, он обеспечивает сокращения беременной матки и влияет на секреторную функцию молочных желез.

Кроме того, в специфических ядрах гипоталамуса образуются «освобождаю­щие» факторы (рилизинг-факторы) и «ингибирующие» факторы, поступающие из гипоталамуса в переднюю долю гипофиза по бугорно-гипофизарному пути (tractus tuberoinfundibularis) и портальной сосудистой сети гипофизарной нож­ки. Попадая в гипофиз, указанные факторы регулируют секрецию гормонов, вы­деляемых железистыми клетками передней доли гипофиза.

Клетки аденогипофиза, продуцирующие гормоны под влиянием поступа­ющих в него рилизинг-факторов, являются крупными и хорошо окрашива­ющимися (хромофильными), при этом большая часть из них окрашивается кислыми красками, в частности эозином. Их называют эозинофильными, или оксифильными, а также альфа-клетками. Они составляют 30—35% всех клеток аденогипофиза и продуцируют соматотропный гормон (СТГ)* или гормон роста (ГР), а также пролактин (ПРЛ). Клетки аденогипофиза (5—10%), окрашива­ющиеся щелочными (основными, базисными) красками, в том числе гема­токсилином, называются базофильными клетками, или бета-клетками. Они выделяют адренокортикотропный гормон (АКТГ) и тиреотропный гормон (TIT).

Около 60% клеток аденогипофиза плохо воспринимают краски (хромофобные клетки, или гамма-клетки) и не обладают гормоносекреторной функцией.

Источниками кровоснабжения гипоталамуса и гипофиза являются ветви артерий, составляющих артериальный круг большого мозга (circulus arteriosis cerebri, виллизиев круг), в частности гипоталамические ветви средней мозго­вой и задней соединительной артерий, при этом кровоснабжение гипоталаму­са и гипофиза оказывается исключительно обильным. В I мм3 ткани серого вещества гипоталамуса насчитывается в 2—3 раза больше капилляров, чем в таком же объеме ядер черепных нервов. Кровоснабжение гипофиза представлено так называемой воротной (портальной) сосудистой системой. Отходящие от ар­териального круга артерии разделяются на артериолы, затем образуют густую первичную артериальную сеть. Обилие сосудов гипоталамуса и гипофиза обеспе­чивает происходящую здесь своеобразную интеграцию функций нервной, эндокрин­ной и гуморальной систем. Сосуды гипоталамической области и гипофиза об­ладают высокой проницаемостью для различных химических и гормональных

ингредиентов крови, а также белковых соединений, в том числе нуклеопроте-идов, нейротропных вирусов. Это определяет повышенную чувствительность гипоталамической области к воздействию разнообразных вредных факторов, попадающих в сосудистое русло, что необходимо хотя бы для обеспечения скорейшего их выведения из организма с целью поддержания гомеостаза.

Гипофизарные гормоны выделяются в кровяное русло и гематогенным путем, достигая соответствующих мишеней. Существует мнение, что частично они попадают в ликворные пути, прежде всего в III желудочек мозга.

Эндокринные функции гипоталамуса и гипофиза регулируются нервной сис­темой. Продуцируемые в них гормоны можно отнести к лигандам — биологичес­ки активным веществам, носителям регулирующей информации. Мишенью для них служат специализированные рецепторы органов и тканей. Поэтому гормоны можно рассматривать как своеобразные медиаторы, которые могут передавать информацию на большие расстояния гематогенным путем. В таких случаях этот путь рассматривают как гуморальное колено сложных рефлекторных дуг, обес­печивающих деятельность отдельных органов и тканей на периферии. Кстати, информация о деятельности этих органов и тканей направляется в структуры центральной нервной системы, в частности гипоталамуса, по нервным аффе­рентным путям, а также гематогенным путем, по которому с периферии в центр передается информация о степени активности различных периферических же­лез внутренней секреции (процесс обратной афферентации).

Такая трактовка роли гормонов исключает представления об автономности эндокринной системы и подчеркивает взаимосвязь и взаимозависимость эн­докринных желез и нервной ткани.

Гипоталамические структуры осуществляют регуляцию функций симпати­ческого и парасимпатического отделов вегетативной нервной системы и под­держание в организме вегетативного баланса, при этом в гипоталамусе могут быть выделены эрготропные и трофические зоны (Hess W., 1881 — 1973).